.NET Conf 2025 - Genova

Le novita di C# 14
e .NET 10

.

= 7

/

<

|

|

Senior Software Architect - Consultant

Raffaele
MEWe]

@raffaeler - raffaeler@vevy.com
https://www.linkedin.com/in/raffaelerialdi/

S DotNet

Liguria

Y

— T
5 S
o

Chi sono A Mot

Liguria
- Laurea Master in Ingegneria Elettronica (Unige)
- Insegna saltuariamente a Ingegneria Informatica (Unige)
- Membro della commissione ICT dell'Ordine degli Ingegneri di Genova CaprLicATs

- Libero professionista, Software Architect Consultant in diverse aree: Py

- Financial, Manufacturing, Healthcare, F1 racing, ...
- Speaker in conferenze nel mondo (piu di 200 interventi in 20 anni) e
* Europa, Asia, USA
« Co-Autore di "Elettronica Applicata" e "C# Programming"
- Presidente di DotNetLiguria, community attiva a Genova e in Liguria

- Microsoft Most Valuable Professional per 21 anni consecutivi

.NET 10 Runtime

Estensione al supporto ufficiale delle STS di .NET

- Long Term Support (LTS): sono le versioni pari come .NET 10

- Sono supportate per 3 anni

- Standard Term Support (STS): sono le versioni dispari come .NET 9

- A partire dalla versione 9 sono supportate per 2 anni

- Rende possibile adottarle senza differenze nella durata del supporto

_ Fuori supporto, durata inferiore

.NET 6

.NET 7

.NET 8

.NET 9

.NET 10

Windows Server 2025

STS
LTS
STS
LTS

10 Novembre 2026
10 Novembre 2026
14 Novembre 2028
14 Novembre 2034

Attuale
Attuale
Attuale

Contiene .NET Framework 3.5

Un ripasso veloce sul Garbage Collector

- Workstation GC (default in .NET Core per le app non-hosted)

- Gira nello stesso thread/priorita che ha scatenato il GC

- Server GC (default per le app come ASP.NET Core)
- Gira su piu thread concorrenti alla massima priorita
« GCSettings.lsServerGC

<PropertyGroup>
<ServerGarbageCollection>true DOTNET _gcServer=1
</ServerGarbageCollection> —

</PropertyGroup>

Dynamic Adaptation To Application Sizes (DATAS)

E stato gia introdotto in .NET 9 (STS) per default

E solo disponibile nel Server GC
Si (dis)abilita con la variabile DOTNET _GCDynamicAdaptationMode

Adatta dinamicamente |la dimensione dell'Heap a seconda delle
allocazioni eseguite dall'applicazione
In passato la dimensione era tendenzialmente quasi sempre in crescita

Scenari dove DATAS e utile in applicazioni/container che:
consumano poca memoria ma hanno picchi improvvisi
tollerano un piccolo rallentamento usato per disallocare
necessitano di liberare memoria a vantaggio di altri (thread o processi).

Perché DATAS e rilevante in .NET 10°?

Scenario . ASP.NET Core in .NET 10 dopo un picco di utilizzo di RAM

Dopo un picco di utenti, Kestrel Web Server proattivamente rilascia la memoria
DATAS adatta la dimensione dello heap, liberando al piu presto la memoria

Il working set puo scendere anche del 93%

Il container dell'applicazione occupa meno memoria
Molto importante per evitare il Linux Out-of-Memory (OOM) che termina i processi

La VM del container rende disponibile la memoria all'Host
Va configurato il Memory Ballooning. Disponibile in KVM/Proxmox, VMWare e in Cloud
E una feature per cui la VM pub rilasciare memoria a vantaggio di altre VM

Scenario ASP.NET Core .NET 10 con preferenza alla performance
Disabilitare DATAS prediligendo la performance all'occupazione di RAM

Emblematico di come le nuove architetture cadano nel primo scenario.

Breaking Change: Niente piu SIGTERM di default

- Breaking Change: Il CLR non fornisce piu gli handler di default per:
- CTRL_SHUTDOWN_EVENT e CTRL_CLOSE_EVENT su Windows
« SIGTERM e SIGHUP nei sistemi *nix

- Conseguenza
- Gli eventi di AppDomain.ProcessExit e AssemblyLoadContext.Unloading non sono
piu chiamati
* Motivi
- Insufficienti/inadeguati per applicazioni console, container e servizi Windows
- Rimedio
- Utilizzare HostingHostBuilderExtensions.UseConsolelLifetime (default in ASP.NET)

- Handler manuali:
https://learn.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/10.0/sigterm-signal-handler

Altre novita interessanti

- Nuovo formato SLNX per le Solution
- E il default per "dotnet new sIn"

- Crittografia
» Post-quantum crypto APIs
- Disponibilita di TLS 1.3

- Nuove conversioni da numero Hex

- Convert.FromHexString

* Nuovo WebSocketStream

- Abilita I'uso di stream via WebSocket

- Integrato il progetto community

- System.Ling.AsyncEnumerable

- Nuovo ordinamento numerico

StringComparer sc =
StringComparer.Create(
CultureInfo.CurrentCulture,
CompareOptions.NumericOrdering);
Console.WriteLine(sc.Equals("02", "2"));
// Output: True

var versions =
new[] { "v 1.3", "V 1.10", "V 2.0" }
.Order(sc);

foreach (string ver in versions)

{

}

// Output:
// VvV 1.3
// V 1.10
// V 2.0

Console.WriteLine(ver);

Performance

Method

PerfArray
PerfArray
PerfArray

Perfliist
Perfliist
Perfliist

PerfQueue
PerfQueue
PerfQueue

PerfStack
PerfStack
PerfStack

PerfDictionary
PerfDictionary
PerfDictionary

Runtime

.NET
.NET
.NET

.NET
.NET
.NET

.NET
.NET
.NET

.NET
.NET
.NET

9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

152.
256.
796.

154.
410.
.38

1,034

72

118.
340.
972.

00
60
63

82
96

.05
378.
983.

90
96

35
94
96

ns
ns
ns

ns
ns
ns

ns
ns
ns

ns
ns
ns

ns
ns
ns

o O

o O

o O

o O

.19
.32
.00

.15
.40
.00

.07
.39
.00

.12
.35
.00

foreach (var n in numbers)

JIT: ottimizzazioni sull Enumeratore

}

Code Si:ze

269 B
411 B
212 B

302 B
549 B
212 B

256 B
639 B
212 B

323 B
449 B
212 B

um += n;

| Allocated

40 B
40 B

40 B

40 B
40 B

40 B

I
I
I
I
I
I
I
I
I
I 40 B
I
I
I
I
I
I
I
I
| 40 B

| Alloc Ratio

NA
NA
NA

o

.00
.00

=

o

.00
.00

=

o

.00
.00

=

=

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| .00
I

JIT: allocazioni eseguite sullo stack invece dell’heap

StopWatchObj
StopWatchObj
StopWatchObj

PointClass
PointClass
PointClass

Persons
Persons
Persons

ForEachPersons
ForEachPersons
ForEachPersons

Personslist
Personslist
Personslist

IntArraySum
IntArraySum
IntArraySum

StringArraySumLength
StringArraySumLength
StringArraySumLength

Runtime

_NET
_NET

.NET
.NET
.NET

.NET
.NET
.NET

9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

10.0
9.0
Framework

POO FRPOO PROO

HOO HHO KHKRKR HOO

Code Size
95

468

316

3
345
346

6
6
41

6
6
152

222
184
221

514
563
288

111
82
88

122
100
135

oW DWW WO WowWw COWwWw WHWw Wow Wow

Allocated
40 B
72 B
40 B
40 B

(v BN

24

64

64
104
104

136
136
144

WWw WwWww Wi |

48
48

W

48
48

W

Alloc Ratio

)OO HPRO HPOO HRERPRO RPROO RHPROO PO HOO
o
o

File-based apps

Usare C# come linguaggio di scripting

- E sufficiente scrivere un file .cs ed avviarlo con la CLI di dotnet
- || compilatore C# supporta la direttiva #: che ignora cio che segue

- La CLI di dotnet riconosce i parametri e li usa per la compilazione

#:package Colorful.Console@l.2.15
#:property TargetFramework=net10.0
#:property Nullable=enable

- La CLI dotnet tratta il file .cs come fosse un progetto
- dotnet publish helloworld.cs -0 . -r win-x64 -p:PublishSingleFile=true

* Su Linux e possibile usare C# come bash script

1. Prima riga: #!/usr/bin/env dotnet

2. Usare LF come per gli a-capo dei file - E
3. chmod +x helloworld.cs

VSCode "F1"

Le novita di C# 14

Extension members

C#14 va oltre gli "Extension Methods" includendo tutti i membri

public static class PointExtensionsOld

{
public static string ToStringEx(this Point p) => $"Point(X: {p.X}, Y: {p.Y})";
}
public static class PointExtensionsNew
{
extension(Point p)
{
public string ToStringEx() => $"Point(X: {p.X}, Y: {p.Y})";
public Point Neg => new Point(-p.X, -p.Y);
public static Point operator +(Point left, Point right)
=> new Point(left.X + right.X, left.Y + right.Y);
}

Field-backed properties

public class Person

{

public Person(string name, int age)

{

Name = name;
Age = age;
}

public string Name

{
get => field;
set => field =
}

public int Age
{
get;
set => field =

value ?? throw new ArgumentNullException(nameof(value));

value;

Nuove conversioni implicite per Span<T>

String[] Strings — { "1", n2u, u3n, nun, n5u };

// C# 13 C# 14
X.M(strings); // IEnumerable<T> ReadOnlySpan<T>
X.M(strings.AsSpan()); // Span<T> Span<T>
X.M(strings.AsReadOnly()); // IEnumerable<T> IEnumerable<T>

static class X

{

public static void M<T>(IEnumerable<T> s) => Console.WritelLine("IEnumerable<T>");
public static void M<T>(Span<T> s) => Console.WriteLine("Span<T>");

// Ignorato prima di C# 14
public static void M<T>(ReadOnlySpan<T> s)=>Console.WriteLine("ReadOnlySpan<T>");

Utilizzo di nameof sui tipi unbounded

- | tipi unbounded sono quelli privi dell'argomento generico
* List<>
* Dictionary<,>

- Da C# 14 e possibile utilizzare nameof(List<>)
- Tutti i nameof(...) che seguono, restituiscono la stringa "List"

// Nuovo a partire da C# 14
Console.WriteLine($"nameof(List<>) => {nameof(List<>)}");

// Funzionavano gia prima
Console.WriteLine($"nameof(List<string>) => {nameof(List<string>)}");
Console.WriteLine($"nameof(List<int>) => {nameof(List<int>)}");

Assegnazione condizionale dei tipi nullabili

Person? person = null;
UpdatePerson(person, 30);

public void UpdatePerson(Person? person, int age)

{
// A partire da C# 14

person?.Age = age;

// Prima di C# 14
if (person != null) person.Age = age;

Dichiarazione parziale dei membri

- Tipi e metodi parziali erano gia disponibili da molte versioni
- C# 13 ha esteso a proprieta e indexers
- C# 14 completa la lista con costruttori ed eventi parziali

public partial class Alarm : BaseAlarm public class BaseAlarm
{ {
// dichiarazione del ctor parziale protected string _location;
public partial Alarm(public BaseAlarm(string location)
string msg, string location); {
} _location = location;
}
public partial class Alarm 1
{

private string _message;

// implementazione del ctor parziale
public partial Alarm(string msg, string location)
: base(location) { _message = msg; }

Ridefinire gli operatori composti

- Gli operatori composti sono +=, *=, etc.

* Prima di C# 14 non era possibile ridefinirli
- Ridefinendo solo operator + viene creata ogni volta una nuova istanza

public class Age
{

public Age(int years) => Years = years;
public int Years { get; set; }

// Questo operatore muta lo stato dell'istanza (nuovo in C# 14)
public void operator +=(int years) => Years += years;

// Questo operatore crea sempre una nuova istanza
public static Age operator +(Age left, Age right)
=> new Age(left.Years + right.Years);

Cosa potremmo vedere in .NET 11 e C# 157

Discriminated Union Types

Gia presenti in Typescript

Si sposano perfettamente con il pattern matching di C#
Evoluzione del pattern matching
Uso degli iteratori dentro le Lambda

Nuova implementazione dei async/await (gia disponibile come
experimental in .NET 10)
Oggi il compilatore genera una macchina a stati
Domani potrebbe essere gestita dal runtime
https://github.com/dotnet/runtime/issues/109632

Ne parleremo a DotNetConf 2026!

Domande?

	Introduction
	Slide 1
	Slide 4: Chi sono
	Slide 6: .NET 10 Runtime
	Slide 7: Estensione al supporto ufficiale delle STS di .NET
	Slide 8: Un ripasso veloce sul Garbage Collector
	Slide 9: Dynamic Adaptation To Application Sizes (DATAS)
	Slide 10: Perché DATAS è rilevante in .NET 10?
	Slide 11: Breaking Change: Niente più SIGTERM di default
	Slide 12: Altre novità interessanti
	Slide 13: Performance
	Slide 14: JIT: ottimizzazioni sull'Enumeratore
	Slide 15: JIT: allocazioni eseguite sullo stack invece dell'heap
	Slide 17: File-based apps
	Slide 18: Usare C# come linguaggio di scripting
	Slide 20: Le novità di C# 14
	Slide 21: Extension members
	Slide 22: Field-backed properties
	Slide 23: Nuove conversioni implicite per Span<T>
	Slide 24: Utilizzo di nameof sui tipi unbounded
	Slide 25: Assegnazione condizionale dei tipi nullabili
	Slide 26: Dichiarazione parziale dei membri
	Slide 28: Ridefinire gli operatori composti
	Slide 29: Cosa potremmo vedere in .NET 11 e C# 15?
	Slide 30: Domande?

