
Senior Software Architect - Consultant

@raffaeler - raffaeler@vevy.com

https://www.linkedin.com/in/raffaelerialdi/

@raffaeler

Chi sono

• Laurea Master in Ingegneria Elettronica (Unige)

• Insegna saltuariamente a Ingegneria Informatica (Unige)

• Membro della commissione ICT dell'Ordine degli Ingegneri di Genova

• Libero professionista, Software Architect Consultant in diverse aree:

• Financial, Manufacturing, Healthcare, F1 racing, ...

• Speaker in conferenze nel mondo (più di 200 interventi in 20 anni)

• Europa, Asia, USA

• Co-Autore di "Elettronica Applicata" e "C# Programming"

• Presidente di DotNetLiguria, community attiva a Genova e in Liguria

• Microsoft Most Valuable Professional per 21 anni consecutivi

.NET 10 Runtime

@raffaeler

Estensione al supporto ufficiale delle STS di .NET

• Long Term Support (LTS): sono le versioni pari come .NET 10

• Sono supportate per 3 anni

• Standard Term Support (STS): sono le versioni dispari come .NET 9

• A partire dalla versione 9 sono supportate per 2 anni

• Rende possibile adottarle senza differenze nella durata del supporto

Versione Supporto Data fine supporto Note

.NET 6 LTS 12 Novembre 2024 Fuori supporto

.NET 7 STS 14 Maggio 2024 Fuori supporto, durata inferiore

.NET 8 LTS 10 Novembre 2026 Attuale

.NET 9 STS 10 Novembre 2026 Attuale

.NET 10 LTS 14 Novembre 2028 Attuale

Windows Server 2025 ― 14 Novembre 2034 Contiene .NET Framework 3.5

@raffaeler

Un ripasso veloce sul Garbage Collector

• Workstation GC (default in .NET Core per le app non-hosted)

• Gira nello stesso thread/priorità che ha scatenato il GC

• Server GC (default per le app come ASP.NET Core)

• Gira su più thread concorrenti alla massima priorità

• GCSettings.IsServerGC

<PropertyGroup>
 <ServerGarbageCollection>true
 </ServerGarbageCollection>
</PropertyGroup>

DOTNET_gcServer=1

@raffaeler

Dynamic Adaptation To Application Sizes (DATAS)

• È stato già introdotto in .NET 9 (STS) per default

• È solo disponibile nel Server GC

• Si (dis)abilita con la variabile DOTNET_GCDynamicAdaptationMode

• Adatta dinamicamente la dimensione dell'Heap a seconda delle
allocazioni eseguite dall'applicazione

• In passato la dimensione era tendenzialmente quasi sempre in crescita

• Scenari dove DATAS è utile in applicazioni/container che:

1. consumano poca memoria ma hanno picchi improvvisi

2. tollerano un piccolo rallentamento usato per disallocare

3. necessitano di liberare memoria a vantaggio di altri (thread o processi).

@raffaeler

Perché DATAS è rilevante in .NET 10?

• Scenario ASP.NET Core in .NET 10 dopo un picco di utilizzo di RAM

1. Dopo un picco di utenti, Kestrel Web Server proattivamente rilascia la memoria

2. DATAS adatta la dimensione dello heap, liberando al più presto la memoria
• Il working set può scendere anche del 93%

3. Il container dell'applicazione occupa meno memoria
• Molto importante per evitare il Linux Out-of-Memory (OOM) che termina i processi

4. La VM del container rende disponibile la memoria all'Host
• Va configurato il Memory Ballooning. Disponibile in KVM/Proxmox, VMWare e in Cloud

• È una feature per cui la VM può rilasciare memoria a vantaggio di altre VM

• Scenario ASP.NET Core .NET 10 con preferenza alla performance

• Disabilitare DATAS prediligendo la performance all'occupazione di RAM

• Emblematico di come le nuove architetture cadano nel primo scenario.

@raffaeler

Breaking Change: Niente più SIGTERM di default

• Breaking Change: Il CLR non fornisce più gli handler di default per:

• CTRL_SHUTDOWN_EVENT e CTRL_CLOSE_EVENT su Windows

• SIGTERM e SIGHUP nei sistemi *nix

• Conseguenza

• Gli eventi di AppDomain.ProcessExit e AssemblyLoadContext.Unloading non sono
più chiamati

• Motivi

• Insufficienti/inadeguati per applicazioni console, container e servizi Windows

• Rimedio

• Utilizzare HostingHostBuilderExtensions.UseConsoleLifetime (default in ASP.NET)

• Handler manuali:
https://learn.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/10.0/sigterm-signal-handler

Altre novità interessanti

• Nuovo formato SLNX per le Solution

• È il default per "dotnet new sln"

• Crittografia

• Post-quantum crypto APIs

• Disponibilità di TLS 1.3

• Nuove conversioni da numero Hex

• Convert.FromHexString

• Nuovo WebSocketStream

• Abilita l'uso di stream via WebSocket

• Integrato il progetto community

• System.Linq.AsyncEnumerable

• Nuovo ordinamento numerico
StringComparer sc =

StringComparer.Create(
CultureInfo.CurrentCulture,
CompareOptions.NumericOrdering);

Console.WriteLine(sc.Equals("02", "2"));
// Output: True

var versions =
new[] { "V 1.3", "V 1.10", "V 2.0" }

.Order(sc);
foreach (string ver in versions)
{

Console.WriteLine(ver);
}
// Output:
// V 1.3
// V 1.10
// V 2.0

Performance

JIT: ottimizzazioni sull'Enumeratore

| Method | Runtime | Mean | Ratio | Code Size | Allocated | Alloc Ratio |

|--------------- |------------------- |------------:|------:|----------:|----------:|------------:|

| PerfArray | .NET 10.0 | 41.12 ns | 0.86 | 34 B | - | NA |

| PerfArray | .NET 9.0 | 39.07 ns | 0.81 | 34 B | - | NA |

| PerfArray | .NET Framework 4.8 | 48.17 ns | 1.00 | 52 B | - | NA |

| | | | | | | |

| PerfList | .NET 10.0 | 152.00 ns | 0.19 | 269 B | - | 0.00 |

| PerfList | .NET 9.0 | 256.60 ns | 0.32 | 411 B | 40 B | 1.00 |

| PerfList | .NET Framework 4.8 | 796.63 ns | 1.00 | 212 B | 40 B | 1.00 |

| | | | | | | |

| PerfQueue | .NET 10.0 | 154.82 ns | 0.15 | 302 B | - | 0.00 |

| PerfQueue | .NET 9.0 | 410.96 ns | 0.40 | 549 B | 40 B | 1.00 |

| PerfQueue | .NET Framework 4.8 | 1,034.38 ns | 1.00 | 212 B | 40 B | 1.00 |

| | | | | | | |

| PerfStack | .NET 10.0 | 72.05 ns | 0.07 | 256 B | - | 0.00 |

| PerfStack | .NET 9.0 | 378.90 ns | 0.39 | 639 B | 40 B | 1.00 |

| PerfStack | .NET Framework 4.8 | 983.96 ns | 1.00 | 212 B | 40 B | 1.00 |

| | | | | | | |

| PerfDictionary | .NET 10.0 | 118.35 ns | 0.12 | 323 B | - | 0.00 |

| PerfDictionary | .NET 9.0 | 340.94 ns | 0.35 | 449 B | 40 B | 1.00 |

| PerfDictionary | .NET Framework 4.8 | 972.96 ns | 1.00 | 212 B | 40 B | 1.00 |

foreach (var n in numbers)
{

sum += n;
}

Method	Runtime	Mean	Ratio	Code Size	Allocated	Alloc Ratio
IntArray	.NET 10.0	6.8047 ns	0.12	95 B	-	0.00
IntArray	.NET 9.0	15.6022 ns	0.28	468 B	40 B	0.56
IntArray	.NET Framework 4.8	56.2670 ns	1.00	316 B	72 B	1.00
StopWatchObj	.NET 10.0	0.0227 ns	0.001	3 B	-	0.00
StopWatchObj	.NET 9.0	18.3711 ns	0.975	345 B	40 B	1.00
StopWatchObj	.NET Framework 4.8	18.9289 ns	1.004	346 B	40 B	1.00
PointClass	.NET 10.0	1.0283 ns	0.273	6 B	-	0.00
PointClass	.NET 9.0	0.0196 ns	0.005	6 B	-	0.00
PointClass	.NET Framework 4.8	3.7884 ns	1.006	41 B	24 B	1.00
Persons	.NET 10.0	0.0026 ns	0.000	6 B	-	0.00
Persons	.NET 9.0	0.0363 ns	0.002	6 B	-	0.00
Persons	.NET Framework 4.8	18.0991 ns	1.000	152 B	64 B	1.00
ForEachPersons	.NET 10.0	20.4099 ns	0.60	222 B	64 B	0.62
ForEachPersons	.NET 9.0	31.2960 ns	0.91	184 B	104 B	1.00
ForEachPersons	.NET Framework 4.8	34.2549 ns	1.00	221 B	104 B	1.00
PersonsList	.NET 10.0	41.1831 ns	1.15	514 B	136 B	0.94
PersonsList	.NET 9.0	46.9043 ns	1.30	563 B	136 B	0.94
PersonsList	.NET Framework 4.8	37.3750 ns	1.04	288 B	144 B	1.00
IntArraySum	.NET 10.0	4.2722 ns	0.50	111 B	-	0.00
IntArraySum	.NET 9.0	12.9106 ns	1.51	82 B	48 B	1.00
IntArraySum	.NET Framework 4.8	8.6489 ns	1.01	88 B	48 B	1.00
StringArraySumLength	.NET 10.0	2.9564 ns	0.16	122 B	-	0.00
StringArraySumLength	.NET 9.0	12.6118 ns	0.69	100 B	48 B	1.00
StringArraySumLength	.NET Framework 4.8	18.9330 ns	1.03	135 B	48 B	1.00

JIT: allocazioni eseguite sullo stack invece dell'heap

File-based apps

@raffaeler

Usare C# come linguaggio di scripting

• È sufficiente scrivere un file .cs ed avviarlo con la CLI di dotnet

• Il compilatore C# supporta la direttiva #: che ignora ciò che segue

• La CLI di dotnet riconosce i parametri e li usa per la compilazione

• La CLI dotnet tratta il file .cs come fosse un progetto

• dotnet publish helloworld.cs -o . -r win-x64 -p:PublishSingleFile=true

• Su Linux è possibile usare C# come bash script

1. Prima riga: #!/usr/bin/env dotnet

2. Usare LF come per gli a-capo dei file

3. chmod +x helloworld.cs

#:package Colorful.Console@1.2.15
#:property TargetFramework=net10.0
#:property Nullable=enable

VSCode "F1"

Le novità di C# 14

@raffaeler

Extension members

C#14 va oltre gli "Extension Methods" includendo tutti i membri

public static class PointExtensionsOld
{

public static string ToStringEx(this Point p) => $"Point(X: {p.X}, Y: {p.Y})";
}

public static class PointExtensionsNew
{

extension(Point p)
{

public string ToStringEx() => $"Point(X: {p.X}, Y: {p.Y})";
public Point Neg => new Point(-p.X, -p.Y);

 public static Point operator +(Point left, Point right)
=> new Point(left.X + right.X, left.Y + right.Y);

}
}

Field-backed properties
public class Person
{

public Person(string name, int age)
{

Name = name;
Age = age;

}

public string Name
{

get => field;
set => field = value ?? throw new ArgumentNullException(nameof(value));

}

public int Age
{

get;
set => field = value;

}
}

Nuove conversioni implicite per Span<T>

static class X
{

public static void M<T>(IEnumerable<T> s) => Console.WriteLine("IEnumerable<T>");

public static void M<T>(Span<T> s) => Console.WriteLine("Span<T>");

// Ignorato prima di C# 14
public static void M<T>(ReadOnlySpan<T> s)=>Console.WriteLine("ReadOnlySpan<T>");

}

string[] strings = { "1", "2", "3", "4", "5" };

// C# 13 C# 14
X.M(strings); // IEnumerable<T> ReadOnlySpan<T>
X.M(strings.AsSpan()); // Span<T> Span<T>
X.M(strings.AsReadOnly()); // IEnumerable<T> IEnumerable<T>

@raffaeler

Utilizzo di nameof sui tipi unbounded

• I tipi unbounded sono quelli privi dell'argomento generico

• List<>

• Dictionary<,>

• …

• Da C# 14 è possibile utilizzare nameof(List<>)

• Tutti i nameof(…) che seguono, restituiscono la stringa "List"

// Nuovo a partire da C# 14
Console.WriteLine($"nameof(List<>) => {nameof(List<>)}");

// Funzionavano già prima
Console.WriteLine($"nameof(List<string>) => {nameof(List<string>)}");
Console.WriteLine($"nameof(List<int>) => {nameof(List<int>)}");

Assegnazione condizionale dei tipi nullabili

Person? person = null;
UpdatePerson(person, 30);

public void UpdatePerson(Person? person, int age)
{

// A partire da C# 14
person?.Age = age;

// Prima di C# 14
if (person != null) person.Age = age;

}

@raffaeler

Dichiarazione parziale dei membri
• Tipi e metodi parziali erano già disponibili da molte versioni

• C# 13 ha esteso a proprietà e indexers

• C# 14 completa la lista con costruttori ed eventi parziali

public partial class Alarm : BaseAlarm
{

// dichiarazione del ctor parziale
public partial Alarm(

 string msg, string location);
}

public partial class Alarm
{

private string _message;

// implementazione del ctor parziale
public partial Alarm(string msg, string location)

: base(location) { _message = msg; }
}

public class BaseAlarm
{

protected string _location;
public BaseAlarm(string location)
{

_location = location;
}

}

@raffaeler

Ridefinire gli operatori composti

• Gli operatori composti sono +=, *=, etc.

• Prima di C# 14 non era possibile ridefinirli

• Ridefinendo solo operator + viene creata ogni volta una nuova istanza

public class Age
{

public Age(int years) => Years = years;
public int Years { get; set; }

// Questo operatore muta lo stato dell'istanza (nuovo in C# 14)
public void operator +=(int years) => Years += years;

// Questo operatore crea sempre una nuova istanza
public static Age operator +(Age left, Age right)

=> new Age(left.Years + right.Years);
}

@raffaeler

Cosa potremmo vedere in .NET 11 e C# 15?

• Discriminated Union Types

• Già presenti in Typescript

• Si sposano perfettamente con il pattern matching di C#

• Evoluzione del pattern matching

• Uso degli iteratori dentro le Lambda

• Nuova implementazione dei async/await (già disponibile come
experimental in .NET 10)

• Oggi il compilatore genera una macchina a stati

• Domani potrebbe essere gestita dal runtime

• https://github.com/dotnet/runtime/issues/109632

• Ne parleremo a DotNetConf 2026!

Domande?

	Introduction
	Slide 1
	Slide 4: Chi sono
	Slide 6: .NET 10 Runtime
	Slide 7: Estensione al supporto ufficiale delle STS di .NET
	Slide 8: Un ripasso veloce sul Garbage Collector
	Slide 9: Dynamic Adaptation To Application Sizes (DATAS)
	Slide 10: Perché DATAS è rilevante in .NET 10?
	Slide 11: Breaking Change: Niente più SIGTERM di default
	Slide 12: Altre novità interessanti
	Slide 13: Performance
	Slide 14: JIT: ottimizzazioni sull'Enumeratore
	Slide 15: JIT: allocazioni eseguite sullo stack invece dell'heap
	Slide 17: File-based apps
	Slide 18: Usare C# come linguaggio di scripting
	Slide 20: Le novità di C# 14
	Slide 21: Extension members
	Slide 22: Field-backed properties
	Slide 23: Nuove conversioni implicite per Span<T>
	Slide 24: Utilizzo di nameof sui tipi unbounded
	Slide 25: Assegnazione condizionale dei tipi nullabili
	Slide 26: Dichiarazione parziale dei membri
	Slide 28: Ridefinire gli operatori composti
	Slide 29: Cosa potremmo vedere in .NET 11 e C# 15?
	Slide 30: Domande?

